

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

- Write a node structure for linked representation of a polynomial. Explain the algorithm to 6 a. add two polynomials represented using linked list. (08 Marks)
 - Write C functions insert front() and delete front() using doubly linked list. b.
 - For the given Sparse matrix, give the linked list representation. c.
 - 0 0 4 0 0 $\mathbf{A} = \begin{vmatrix} 6 & 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{vmatrix}$

(04 Marks)

(08 Marks)

Module-4

- What is a tree? With suitable example, define 7 2 (i) Binary tree (ii) Complete binary tree (iii) Strictly Binary tree (iv) Skewed binary tree.
 - (10 Marks) b. Consider the following tree T in Fig.Q7(b). Write the preorder, inorder and postorder traversals for the tree T along with C functions. Also find the depth of tree T.

Write the recursive search and iterative search algorithm for a binary search tree. (08 Marks)

For the given data, draw a binary search tree and show the array and linked representation of

(10 Marks)

(06 Marks)

(06 Marks)

100, 85, 45, 55, 110, 20, 70, 65

8

a. b.

the same.

(06 Marks)

What is the advantage of threaded binary tree over binary tree? Construct the threaded c. binary tree for 10, 20, 30, 40, 50. (06 Marks)

Module-5

a. What is a graph? Give the difference between graph and tree. For the given graph 9 [Fig.Q9(a)], show the adjacency matrix and adjacency list representation of the graph.

		Fig.Q9(a)	(08 Marks)
	b.	Write an algorithm for Breadth first search and depth first search.	(08 Marks)
	c.	Define the following terms with examples:	
		i) Multigraph (ii) Complete graph.	(04 Marks)
		OR	
10	a.	What is hashing? Explain any 3 popular Hash functions.	(08 Marks)

Write an algorithm for Radix sort. b. Summarize any 3 widely used file organization techniques. c.

* * * * *